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Asymptotic properties of induced maximum likelihood estimators
of non-linear models for item recponse variables:

the finite - generic -item pool case

Douglas H. Jones
Advanced Statistical Technologies Corporation

Abstract

The progress of modern mental test theory depends very much on the tech-
niques of maximum likelihood estimation, and many popular applications make use
of likelihoods induced by logistic item response models. While, in reality,
item responses are nonreplicate within a single examinee and the logistic models
are only ideal, practitioners make inferences using the asymptotic distribution
of the maximum likelihood estimator derived as if item responses were replicated
and satisfied their ideal model. This article proposes a sample space
acknowledging these two realities and derives the asymptotic distribution of the
induced maximum likelihood estimator.

This article assumes that items, while sampled from an infinite set of
items, have but a finite domain of alternate response functions: this situation
is the case of the finite-generic-item-pool. Later articles will attempt to
remove this assumption.

Using the proposed sample space, the article applies the statistical func-
tional approach of von Mises to derive the influence curve of the maximum like-
lihood estimator; to discuss related robustness porperties; and to derive new
classes of resistent estimators. This article's general purpose is revealing
the value of these methods for uncovering the relative merits of different item
response functions. Proofs and mathematical derivations are minimized to
increase the accessability of this complex subject.

Approved for public release; distribution unlimited.
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1. INTRODUCTION

While maximum likelihood procedures are popular in item response theory

(IRT), (Lord, 1980), their insensitivity to departures from assumptions is

serious enough to warrant cautious use and further study (Wainer-Wrigh-, 1980;

Jones, 1982). The purpose of this article is to explore the behavior of the

procedures when the model is not true.

To apply some of the concepts of robustness theory, we found that some of

the more important concepts required reformulating the maximum likelihood pro-

cedures. In particular the study of the robustness of the maximum likelihood

estimator (MLE) requires viewing it as a function of the empirical probability

distribution function (PDF). The original formulation of item response theory,

as a regression problem, does not allow the summarization of the data in terms

of an empirical PDF. In §2, we recast the structure of the problem so that the

data can be replaced by an empirical PDF and we reformulate the MLE as a func-

tion of it.

In §3, we derive the asymptotic distribution of the MLE when the true PDF

is not generated by the assumed wodel. These results are basic to understanding

the sensitivity of the MLE to departures from assumptions. They make heavy use

of von Mises's approach to statistical functions (Fillippova, 1982).

In §4, we apply the asymptotic formulas derived in §3 to three popular item

respons0 models. A measure of goodness-of-fit, computable with the MLE, is

employed to play the role of the mean squared error (McCullagh-Nelder, 1983;

Pregibon, 1981). These results reveal that certain item response models reverse

the scale of ability.



2

In §5, we formulate the basic robustness criteria associated with Hampel's

influence curve (IC) (Hempel, 1974; Welsch-Krasker, 1982). We derive a relation

between the IC and the maximum bias of the MLE as the true PDF is varied within

an e-contamination neighborhood of the modeled PDF (Huber, 1981). We also

derive the breakdown point (Huber, 1981) of the MLE for certain types of depar-

tures from the assumptions. The analysis of these criteria shows how the notion

of robustness in IRT is fundamentally different from linear and logistic

regression problems.

2. GENERAL NOTATION AND STRUCTURE

The basic formulation of IRT based on maximum likelihood is: u=1 (correct)

or u=0 (incorrect; is observed for each item i with likelihood, given a real

latent parameter 8, equal to

hi(u;8) = plop 11-pi(0)]1-11

and with Pi(8) the ith item response model. The total likelihood based on data

ul,u2,...,un and models P1,P2,...,Pn is:

n
P1,...,Pn) = H hi(ui;8).

i=1

For robustness studies, we need to allow for the possibility that the item

response models are inaccurate. Thus, we assume that E(ui)#Pi(0). But we

retain the assumption of local independence and call Pi(8) an operational model.

To accommodate items with different difficulties and discriminating powers,

and simultaneously, apply standard asymptotic theory, we formulate the sample

space as:

(Sample Space) S = {(u,x): u=0,1; xeX}

X = finite set indexing items.

An observation on S is denoted by s or t, etc., and is generated by administer-

ing a randomly chosen item, x, to obtain a response, u.

7
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An arbitrary probability distribution function (PDF) on S is denoted by n.

A probability distribution over X is denoted by p. The conditional probability

distribution of u given x is denoted by f(u;x). For arbitrary A, there is a p

and f(u;x) such that:

n(s) = f(u;x) p(x), s = (u,x).

Because u is binary; f(u;x) is Bernoulli with some probability of success, II *(x)

satisfying:

f(u;x) = R*(x)u [1-11*(x)]1-u.

The empirical PDF defined for a sample si,s2,..,,ss is defined by denoting

ds to be a point mass at s and

is(t) = n-1 dsi(t)
i=1

It is a PDF on S. The distance Letween two PDF's and n is defined as R-111 =

maxIt(s)-n(s)1.
seS

A parametric family of PDF's on S is defined by {we real}. Values of ne

are denoted by n(s0). A special type of a parametric family is generated by a

set of operational models:

Operational Models: {R(B;x):xeX0 real}

Parametric Family: f(u0,x)=R(B;x)41-11(e;x)11-u

n(s;8)=f(u0,x)p(x)

The traditional structure of IRT is related as follows: the ith obser-

vation is ui with model Pi(B). Let xi be the index value of the ith chosen item

where R(B;xi)=Pi(B). Let se(ui,xi), so that n(si0)=f(ui0,xi)p(xi)=hi(ui;B)

p(xi)

The likelihood based on the sample si,s2,...,ss is:
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n

L(8;s1,s2,...,sn) = II n(si;8).
i=1

If [p(xi): i=1,...,n1 contains no information about 8, MLE's based on the two

likelihoods are identical.

The log-derivative of the parametric PDF is denoted by £(s;8) = (d/d8) log

n(s;8). If it exists, a solution of the implicit equation

n
(Normal Equation) 0 = I gsio)

i=1

is denoted by on and is called the tILE. This equation simplifies with opera-

tional models as follows: The logit of an operational model 1(8;x) and its

derivative is

g(8;x) = log H(8;x)/[1-1[(8;x)]

g"(8;x) = v(8;x)-1 H"(8;x) , where

v(8;x) = H(8;x) [1-H(0;x)].

Using the definition of no, we have:

/(s;8) = g"(8;x)[u-11(8;x)]

and the normal equation becomes

n n

o = I g"(8;xi) [ui-H(8;xi)] = vo;x0-1 [ui-11(8;xi)] 11"(8;xi)
i=1 i=1

The Fisher information of the parametric PDF, no, is

I(0) = -E /"(s;8) n(s;8) = /(s;8)2 n(s;8)

where the sum is over all s in S. This information identity follows from the

total differential of 0 = /(s;8) n(s;8); using n"(s;8) = n(s;8)(d/d8)log n(s;8)

= n(s;8) £(s;8) we have,

o r r(so)n(so) Egs;8)n"(s;8)

= E /"(s;8)n(s;8) + Egs;8)2n(s;8).

Note fcr computational purposes: I(8) = E g"(8;x)2 v(8;x) p(x).

9
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Example. The one-parameter logistic (1PL) and two-parameter logistic (2PL)

item responsa models are characterized by their logits:

g(8;x) = a(x)[8 -b(x)] where a(x) > 0, -4. < b(x) < » are the

discrimination and difficulty parameters for item x. Hence,
n

1(s03) = a(x)[u-11(0;x)] and 0 = y - 11(01.;xi)] is the normal

i=1

equation. The Fisher information is 1(A) m a(x)2 v(8;x)p(x), sum

over all X.

We wish to generalize the normal equation in two ways: first, we want to

show the explicit relation between On and nn; second, we wish to consider esti-

mators that are more general than MLE's.

We rewrite the normal equation using the empirical PDF as

0 = y 1(s; 8) in(s)

where it will be understood that the sum is always over S. We see that the MLE

depends explicitly on the empirical PDF, we denote this dependence by

= 6(nn).

If the empirical PDF is replaced by an arbitrary PDF, the normal equation

defines a general functional relationship, 0(n), between 8 and n: we call ow

a statistical functional.

We define M-type estimators generated by a score function qi(s;8) by the

equation

0= n-1 y csi; 8) = y 400)11,1(s)
1=1

We see that 0(s03)=1.(s03) generates the MLE. We add this generality because our

methods of proof in the next section are really about M-type estimators with the

MLE results following as a special case. Note that the notion of a statistical

function applies to M-type estimators also. More definitions that we need

follow.

10
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We define

m(o,n) = I 0(s0)n(s)

for an arbitrary PDF and score function. The derivative of m(0,n) with respect

to 0 is m'(0,n). Note that m'(00-10) means m'(00) evaluated with n=no. The

normal equation is 0=m(0,nn) and Fisher's information is I(0) = -m'(0010) with

01/. The Newton-Rapheson algorithm for solving the normal equation is

0t +1 = f;t m(et,;10/_mf(etoln);

if 4.t the Fisher scoring algorithm is

et+1 = et + m(et,iin) /i(et).

Let 0(s;0) be a given score function and let 00 denote the value of 0 that

solves the equation 0 = m(0,n), corresponding to this score function. If the

PDF n is a member of some parametric family and satisfies n=nol for a given

fixed parameter value 81 and if 00=01, then we say that the score function is

unbiased.

If 0 is an unbiased score function, then 0=m(0,n0) for all 0. This fact

leads to an identity that is analogous to the Fisher information identity pre-

sented previously and is proven in exactly the same way. The identity is:

-m'(0,T10) = I *(so)t(s;0)n(s0)

If one replaces m (0,nn) by its expectation under Ti o in the Newton-Rapheson

algorithm, one obtains an algorithm that is analogous to Fisher scoring. If 0

is an unbiased score function, then one may use the above identity for -m'(0,ne)

to avoid evaluating the derivative of 0.

An important subclass of unbiased score functions are generated by an

arbitrary weight function w(0;x) where

0(s;0) = w(0;x)(u-11(0;x)11V(0;x).

If we choose

11
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w(0;x) = v(0;x)-1

then #(s;0) = t(s;0) and we are back to the MEE. Other choices of the weight

function lead to resistant estimators. For example, Jones (1982) suggests

w(8;x) = v(0;x)h-1 with hao, a tuning constant. We can stay in the class of

exponential families with arbitrary response variable u, as long as

11(0;x)=E(u10,x) and w(0;x)=var(u10,x)-1 (see Jennrick and Moore, 1975).

Jones' resistant estimator could be generated for these families also by letting

w(0;x)= var(u10,x)h-1. We obtain a more general class of estimators by allowing

the weight functions to depend on the response: Os;0)=w(0;s)[u-11(0;x)]11"(0;x).

Krasker and Welsch (1982) consider these estimators for the general linear

model. Stefanski, Carroll, and Ruppert (1984) consider these estimators for the

logistic model.

An algorithm based on Gauss-Newton's algorithm for solviLig normal equations

with score 4(s;0)=w(0;s)[u-11(0;x)111"(8;x) is as fellows: (see Rclland and Welsch,

1977) define di = 11'(0;xi) and wi = w(ai; si) then

t+1 t t t t t t
8 = 0 + [E di wi di] -1 I di wi

This algorithm is iterative reweighted least squares: at convergence

en=0-, so if we define tle pseudo-observation zedian + [ui 11(11.0xi)] then

On = [I di wi di wi zi.

See Pregibon (1981) and McCullagh and Nelder (1983) for a similar algorithm

based on the exponential family with linear predictors. Note that this

algorithm is also identical to Fisher scoring.

12



8

3. GENERAL ASYMPOTOTIC THEORY OF M- -TYPE ESTIMATORS

We present consistency and asymptotic normality (AN) results in this sec-

tion. In the first Fart we confine attention to the main results and in the

second part we supply the proofs. Readers may skip the proofs and move on to

the next section. In the main results we discuss conditions for consistency and

AN. We also characterize an approximation to the 4-type estimator that is

important for AN results and for the robustness results in §5.

3.1 Main Results: Consistency

Suppose the sample si, s2,...,sn is IID with PDF q. The empirical PDF ;n

satisfies 11in-1140 wp 1 as n«. This fact gives us the obvious candidate for

the limit of an M-type estimator, 00 which solves 0=m(00,11); when does en400? It

is possible that the eqvation 0=m(0,pn) yielding in has more than one solution,

iv which case a consistency result may be about only one of the possible sequen-

ces of M-type estimators. Also, it is possible that the equation 0=m(00,11) does

not have a local solution, in which case a consistency result would not be use-

ful. Some known results follow.

Huber (1964): Let 00 be the unique solution. If 0(s;0) is monotone in 0,

for each seS then every sequence On-40 wpl.

Boos (1977): Let 00 be an isolated solution. If t(s,0) is continuous in 0

for each seS then there exists a sequence on-40 wpl.

Huber (1967, 1980): Let 00 be an unique solution. Let Pl..(0,n)1 be bounded

from zero as 101". If 0(s:0) is continuous in 0 for each seS, then every

sequence de00 wpl.

The various conditions for consistency will be satisfied when we impose

stricter conditions for AN.

Example. For the 2PL model 11(0;x) is strictly monotone increasing and hence

13
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*(s;0) = a(x)[u-11(0;x)! is monotone, the solution 00 to 0 =m(0 ,n)=

a(x)P*(x)4(00;x)]p(x) is unique with H*(x) arbitrary. Thus for 11

arbitrary, Huber (1964) applies. If 11=fiel for some fixed 01, then

00=01 is the unique solution.

3.2 Main Results: Asymptotic Normality

The first order asymptotic properties of M-type estimators are charac-

terized by the influence curve. The influence curve (IC) is defined as: let

seS and ds a point mass at u, for e>0

IC(s,11,#) = lim 0(11+e(85-11))-0(11)
e0

Denoting 0(ds;e) = 0(n +e(ds-11)), we see that the influence curve is an ordinary

derivative of 0(ds;e) evaluated at 0: IC(s01,*) = (d0(ds;e)/de)0. Fox M-type

estimators, it will be proved later that for t an arbitrary PDF, IC(s01,4')t(s)

= (d0(t;e)/de)0. This latter characterization allows us in §5 to make an impor-

tant connection between the bias and the influence curve of MLE's. Also for M-

type estimators the influence curve is:

* * ) ic(soloP) = 000)/-mi(00,11)

where throughout the remainder of this section 00 satisfies 0=m(00,11) and

m'(0u,11)<0.

Example. For the 2PL and n arbitrary

= a(x)[u-11(00;x)]/E a(x)2 v(00x)p(x)

Normally the denominator would depend explictly on H*(x) but does not,

since g"(0;x)=0. However, it does depend on H*(x) through 00 which

solves 0 = a(x)P*(x)-1(x;00)]p(x).

The primary application we make of the influence curve in this section is

to get a leading term apprcAimation:

n

(*) es-00 = n-1 1 IC(si,11,0)+Rn

i=1

14
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where Rn is the remainder term. We show below of Rn 4 0 in probability, thus

the behavior of ni(8n-80) is deduced from the approximation and the Lindeberg-

Levy central limit theorem. The sufficient conditions for AN of M-type

estimators are listed under (C). They are implied by conditions (D) when the

M-type estimator is an MLE:

(C) There exists an open interval Qo and a constant c>0 such that for all 0 in

g0

'-1: *(s;8); *'(s;8); *"(s;8) exist for all seS, with the first two continuous

in d;

C-2: m'(8e,ne) < 0 for all 0 5 e 5 1 and Z: In-05e where Oe solves 0=m(8,re)

and Me = n + e(t-1).

(D) Define Qo = 18: v(8;x)>0 for all xeX) then suppose Qo is not empty and for

all 8eQ0

D-1: H'(8;x); H"(8;x); H"'(0;x) exist for all x, with the first two continuous

in 8;

D-2: I g"(8;x)[H*(x)-148;x)]p(x) < g'(8;x)2 v(8;x)p(x) for H*(x) in an open

interval for each x.

Thewmo 1. Assume (C) the, ni(On-80) is AN mean 0 and variance:

a02 = I ic(s01,402 n(s)

Corollary. Assume (C-2) and n=n61, 81 fixed. If 4 is unbiased, i.e. 80=81,

ni[en-80] is AN with mean 0 and variance:

02 = I cs;80211(04) /ff Igs;00)gs;00)11(s;00)12 where t(s;8) =
0

(am) log n(s;8). Hence an unbiased M-type estimator is efficient

if and only if 4' is proportional to t, or in other words the MLE is

optimal among M-type estimators with unbiased score functions.

15



3.3 Proof of Arymptotic Normality

(***)

Define for any t PDF,

ne = n + e(t-n) and

Oc = 8(n).

A second order Taylor series expansion about 0 is

Oe = 00 + (dO/de)oe + (d20/de2)a a2,

11

0 < a < e. Under conditions (C) we show that this expansion is valid with c=1.

Using the expansion with t4n, we obtain the approximation (*), where Rn is

expressed in terms of the second derivative of Bc. To show that the IC has the

form (**) and that ni Rn 4 0 in probability we derive the first two derivatives

as follows.

Define M(P,e) = m(0,ne). Because BE satisfies M(0e,c) = 0 for all OSen,

the first and second total differentials with respect to e are identically zero

and yield two simultaneous equations involving diO/dei i=1,2:

(1) (aM/80)0e dO/de + ati/ae = 0

(2) (8M/a0)06 d20/de2 + [(82M/a02)8e (dO/de) + (a2M/aBae)ejdO/de

+ (a2m/aEa0)06 dO/de + a2m/aE2 = 0.

Solving equations (1) and (2) for die/dei, j=1,2, and using am2/aE2 = C, we

have from equation (1):

(1') de (81.1)/ (am
de ac ao oe

and from equations (1') and (2):

767 ac

d2o _(a2M)10 (am )2 amy (a2m am) (am )2

(2') dam' (ao oe acao)o, (se ao oe

Now we obtain expression (**) for the IC: Let 00 = 0(n), we have

am/ae = (a/ae) m(00,ne) = (a/ae) 0(s;e0)[n(s) ca(s) n(s))]

= *(s;00) [i(s) - n(s)] = 4p(s;00) i(s). Substituting (am/ae)00 = m'(oo,n)

16



and the last expression into (1') we have for any PDF (de/de)0 = E 4(x00)

(s)/ -m'(00,11). Thus for = ds, we have IC(s,n,4) = $(s;00)/ -m'(00,11).

With =11/1, the empirical PDF, the MLE en = 0(n1) where nl is ne with e=1.

Using the expansion (***) with e=1 we have

where

n
on - e0 = n-1 E ic(siol,$) Rn

i=1

d20
Rn (---

del
a* , for some 0<a*<1.

12

Now we state the conditions for the expansion (***) and hence the

expressioP for Rn to be valid: (see Serfling, 1980, pp. 43, 215).

(A) Apostle (1957, pg. 96) (de/de)+, the righthand derivative, and

d28 /del exist everywhere in the open interval (0,1); with the first

continuous in the half-closed interval [0,1).

By expression (1') and (2') for de/de and d28 /del we have formulated con-

ditions (B) that satisfy conditions (A):

(B) There exists an open interval go such that for all 0 in Qo

B-1: m(0,n), re(0,11), m"(0,n) exist for all n;

B-2: there exists a constant c, such that for all R-111Sc,

110(0e04)<0 for all 05eS1.

To further obtain niRn40, we need to examine the terms in expression (2')

and place appropriate conditions on the score function, 4'. The four terms are:

(8M/80)0e = n0(0e,ne)

(82M/802)0e = m"(0e,n)

(8M/8e) = m(0e,-11)

(8M/8e80)0e =

17
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These terms apply to Rn with &=11n

We see that . Ahavior of Rn depends directly on that of In and in par-

ticular the differences In(s) - n(s), seS. We have given condition (C) at the

beginning of this section to keep m'(Oe,ne) properly away from zero so as to

keep Rn from exploding and to infer its behavior from that of TheThe fcllowing

two lemmas imply that ni Rn40 wpl.

Lemma A. Assume conditions (C). Put t=iir in (2'). There exists constants a

and n0 such that Id28/de21 S alin-112 for all 0e51 and nano wpl.

Lemma B. Assume s1,s2,...,sn are IID with PDF n. Then as n4.. the following

holds:

a) In(s)41(s) for all seS wpl;

b) {n /[nn(s) - n(s)]: seS} converges in law to a Gaussian process with

mean 0 and covariance function:

n(s)[1 -n(s)] s=t

COV(s,t) =

n(s)n(t) sft ;

c) Inn -1140 wpl;

d) nilin-11 converges in las- snd in probability.

These two lemmas imply that ni Rn40 in probability and hence ni(en-80) is AN

since lemma A implies nilRnla nilln-ll'Inn-11 and lemma B implies that Inn -1140

while nil1n-11 remains bounded in probability.

4. SPECIFIC ASYMPTOTIC BEHAVIOR OF KLE's

Throughout this section no will denote a true PDF and 80 the solution to

0=m(8,10). The asymptotic behavior of the MLE is obtained from the previous

results of M-type estimators with score function /(s0), seS. We discuss these

18
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aspects: goodness-of-Lit, scale reproduction, and Fisher variance.

Most practical operational models satisfy condition (D-1). Thus, we can

say that for situations of interest, MLE's are consistent, 0n'00 as n-km and is

asymptotically normal even when no is not a member of the parametric family

{n:0 real] generated by the set of operational models but satisfies the mild

regularity condition (D-2). We will employ this result with the 1PL, 2PL, ant

3PL item response models in the example at the end of_this section.

Let no denote a member of a certain parametric family and consider the MLE

associated with the family. If for some el, no=n01, then the MLE is asymp-

totically unbiased, meaning 00=01. Let to, denote a member of a different para-

metric family. If no=t01 then the MLE is asymptotically biased meaning 0001.

If no is not a member of any parametric family then the notion of unbiasedness

has no meaning.

Even if no is a member of some parametric family not identical to Ind,

the bias does hold much information about how good the MLE may be. This is

because the parametrization of the family containing no is as good as arbitrary

when it is not exactly the one generating the MLE. This leads us to propose a

different notion of accuracy, possibly supplying the information we usually

obtain with measurements of bias.

The information supplied by the bias is obtained from comparison of its

square to the variance, because the mean square error, a measure of total error,

is the sum of the squared bias and variance. When the bias overwhelms the

variance, one usually goes looking for another statistical procedure that can

control the bias. (What this compares to in CRT is the adoption of more complex

item response models).

19
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A measure that seems to decompose into parts due to "bias" and "variance"

and does not depend on the arbitrary parametrization of a true family of PDF's

is as follows: for two PDF's n and t define

Ign,t) = y n(s) log n(s)/t(s)

Igq,t) is nonnegative and equal to 0 when n=t; K'(n0010) = -m(8,A0), thus

1(010010) is minimized by 80. A second order Taylor series expansion gives

E E(n00611) 2 K(npA00) m'(oo,no)nlq,

where we have assumed that the MLE has been modified appropriately to have the

moments for the approximation and we have used Theorem 1.

Thus E K(no,hon) behaves as a "total error" and K(n0000) behaves as "bias

squared" when it is compared to the last term on the right-hand side of the above

Taylor series. The quantity K(in,flo
n
) is proportional to the deviance in

generalized linear models (see McCullagh and Nelder, 1983) and serves as a

goodness-of-fit statistic. Values of E K(no,hon) and its apprwimate

components are displayed in Table 3 and discussed in the example at the the end

of this section.

Information of a different nature than bias, applicable to arbitrarily

parametrized families, is obtained by comparing the rank-order of estimated para-

meters with the rank-order of known abilities. Suppose there is a certain para-

metric family {to} of PDF's with the property that no e Rol where no may be

generated by any member of a population of examinees. But the family {to} is

too complex, making its calibration unstable with reasonable sample sizes of

examinees. Thus, we prefer instead to use a more parsimonious family {he} with

the MLE obtaining 80 as a limit when no=te
1

, 81 fix1d, and n4. Previous

discussion implies that 8081, in general; but the bias here is nonsense. What

20
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is useful is a measure of the distortion between 60 and 61 as 61 moves

throughout the population. We do not propose a measure but we do think that one

should be sensitive to reversals in the "0-scale". Table 3 displays reversals

for the 1PL and 2PL families and is further discussed in the example at the end

of this section.

Turning from bias to variance, we will now consider the predicament of

approximating the true asmptotic variance of an MLE when we do not know no. A

ready approximation to cr; of Aeorem 1 in §3 is the reciprocal of Fisher's

information: morl (§2). But we know from §3 that it is not valid when no is

not a member of the parametric family of PDFs that generate the MLE.

In general, the o; does not majorize 1(60)-1 or viceversa. Thus, it is

possible that the reciprocal of Fisher's information can give either a conser-

vative or misleading approximation to the true asymptotic variance. Table 3

displays the true variance along side the Fisher variance to show both the good

and the bad; we discuss this further in the example.

Example. Listed in Table 1 are the true and modeled response probabilities of

five subjects on four ASVAB items. The true probabilities were actually

obtained from a very complex item response model which was calibrated or a very

large population. The subjects are ranked from lowest to highest going left to

right. The modeled response probabilities follow the 1PL, 2PL, or 3PL it

response models as indicated; they too were calibrated on a very large popula-

tion; Table 2 lists the values of the calibrated parameters. Table 3 is a BUM-

wary of the asymptotic features of the respective MLE's, which we discuss as

follows.

First, note the magnitudes of the traditional notion of bias by taking

lel-e01 differences from columns (1) and (2). These values could easily change

21



17

upon reparametrization Gf the true response model; thus they are arbitrary.

Thus column (1) should only convey the rank-order of the subjects.

Our notion of "bias squared" is found in column (5), K(110,80). These

values will not change if another parametrization were imposed on the true

model. The worst fit it with subjer.t 5(2PL), referring back to Table 1 we

can see that the 2PL mode, provides poor estimates of all item response probabi-

lities. There are three good values; for example, subject 5(3PL) for which

Table 1 shows good estimates of item response probabilities.

Column (3), -me(0000), gives us a feel for the curvature of the likelihood

A A

since ee(00010) is an estimate of nm1(0no1n), the second derivative of the

log-likelihood. We see that the likelihood would tend to be flat for subjects

1,2 (3PL) even though 1"10,00) shows close agreement between the estimated and

true item response probabilities.

We present the "total error" E K(1loolen), column (4), for a sample size of

n=16, each item type represented equally. These errors appear to be equal

across models and subjects with exception of subject 5 (2PL) as noted before.

The components of the total error are in columns (5) and (6) which 'tan tell us

the proportion of the total error due to systematic bias: (5)/(4). The worst

proportion is found with subjects 1, 2 (1PL) meaning that the 1PL is inadequate

with these subjects.

We may average the "total error" and "bias squared," E K(goolon) and

14110,140) respectively, over the subjects to get an overall assessment. These

averages are for the 1PL, 2PL, and 3PL models respectively: (error, bias2) =

(.06,.03), (.06,.03), (.04,.01). We see that on average there is at least 25

percent of total error that is systematic bias.
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The presence of reversals of the 00-scale can be detected from column (2).

Both the 1PL and 2PL item response models have reversals at the lower abilities.

This happens because the 1PL and 2PL calibrations compensate good fit to true

response probabilities by distorting the 90- scale. The Spearman rank correla-

tion between the true ability rank-order and the 00-scale rank-order of the 1PL,

2PL, and 3PL models are respectively: 0.60, 0.67, 1.00. The numbers may be

interpreted as an alternative theoretical goodness-of-fit, since we never would

know the true rank-order of ability, there is no practical gain in the measure.

We compare the true variance and the Fisher variance by using columns (7)

and (8). For the most part, the Fisher variance yields a conservative

assessment of precision; however, it can also be misleading as with subjects 3,

5 (2PL).

Remarks. 1) Column (3), -m'(80,110), can play the role of information. An

.

empirical assessment could be -m'Onoln). Also, ratios could play the

role of relative efficiency.

2) One should be cautious even if measures of fit, such as K(inole
n
),

are favorable because as the example shows it is possible to have

reversals of the 00-scale even if the fit is good.

3) We have refrained from making an elaborate comparison of the 1PL,

2PL, and 3PL models based on the data, because one needs to properly

account for sampling variability of the calibration process. Such a

study is reported in Jones, Wainer and Kaplan (1984).

5. SPECIFIC ROBUSTNESS OF THE MLE

Let m denote an arbitrary true PDF, no some fixed PDF, (110) a parametric

family of PDF's that induces the MLE. Let 8(n) denote the solution to Omm(8,4).
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From TLeorem 1 in §3 we have that 01140(n) with asymptotic variance a2=a2(q).

Note that we will not assume that n or 110 belongs tc 11101.

The asymptotic bias of the MLE relative to 110 and [110} is defined as 10(n)

- 0(n0)1. Let Pe denote an e-neighborhood of 110, for n belonging to Pe we want

to quantify the degradation of bias and variance. We say that the robustness of

the MLE is measured by the amount of degradation of the maximum bias

b(e) = sup 10(n) - 0(n0)1
AePe

and the maximum variance

v(e) = sup a2(n)
mePe

If b(e) were large relative to v(e), then the maximum variance would not be

a very important quantifier of robustness. We confine study to b(e) in this

paper.

There are several important notions for quantifying the robustness of an

estimator. Among them are the sensitivities of a parameteric estimator, a

fitted value, or a predicted value when one observation is deleted from the

sample. These measures are called, respectively, gross error sensitivity

(Huber, 1981), change in fit sensitivity and prediction sensitivity (Krasker and

Welsch, 1983). The gross error sensitivity is relatsd directly to the maximum

bias as s'-own below. We formulate these quantities and demonstrate their use

with the 1PL, 2PL, and 3PL item response models.

Another robustness notion is the sensitivity of the maximum bias as e is

varied. Certain values of e can cause the maximum bias to explode; the smallest

such value is called the breakdown point (Huber, 1981). We formulate this quan-

tity and demonstrate its use with the 1PL, 2PL, and 3PL models also.
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5.1 Sensitivities Based on Deletion

The gross error sensitivity is defined as

/* = maxlIC(s,n0,401.

From the leading term approximation of section 3.2, we see that it is propor-

tional to the maximal influence exerted by anyone observation on the error of

estimation, 0n - 0(n0). It is related to the maximum bias b(e) as follows.

Recall from §3.2 that [0(no+e(t-no))-8(n0)] e4 EIC(s,no,*)t(s) as 40. Let Pe

be the e-contamination neighborhood defined by Pe = in: n=no + e( -no),

arbitrary PDF). Then

sup10(n)-0001 2 e suplE IC(s,110,4)t(s)1.
nePe

Thus

b(e) g e /*.

So that for small e, /* measures the rate of growth of the maximum bias over the

e-contaminated neighborhood.

For M-type estimators /* = « is equivalent to a zero breakdown point,

meaning that any departure from no will cause the maximum bias to explode.

Either condition also implies that the estimator is not continuous at no when

reviewed as a function of n (assuming, of course, a complimentary topology on

the set of PDF's). An estimator is qualitatively robust if it is continuous

(Huber, 1981), thus an M-type estimator is not robust if /* = « or the breakdown

point is zero.

The gross error sensitivity also measures the maximum change in the estima-

tor caused by deleting one observation. Let nn(1) and nn(0) denote the

empirical PDF with and without si. Let en(1) and 611(0) denote the corresponding

MLE's. Then using the direct definition of the influence curve (§3.2) with s=si,
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n=111(0) and e=l/n it is easy to show

0n(1) - en(o) 2 n-1 IC(sioln(0),*)

Thus

21

max len(1) en(0)1 2 a-1 1*.
i

The change in fit sensitivity concerns the effect of deleting one observa-

tion, si, on the estimated logit, g(en;x0. This change in fit is g(en(1);xi)

- g(en(0);x0 a g'65,1(0);x0p5n(1) - 6/1(0)]. Putting this together with the

estimator sensitivity we have

g(en(1);x0-g(en(0);x0gn-lg'On(0);x0IC(si,in(0),*).

Thus the shape of gl(0;x)IC(s,fl,*) would indicate robustness as would the size

of the change in fit sensitivity:

/** = mi.xle(13;x)IC(s01,4)1.

Prediction sensitivity concerns the effect of deleting an observation from

the sample on the predicted logit of some future item, g(en;z) where z is yet to

be administered. Let X=g1(0;z), then by a Taylor series approximation,

g(en;z)ag(0;z)+X(en-O). Hence the change in prediction is measured by the

change in Xen, and XIC(si,fl,*) measures this change due to deleting si. To be

meaningful this change must be weighed relative to its standard deviation,

X[E IC(s,fl,4)2 fl(s)]i. Thus the shape of the ratio indicates robustness as

would the prediction sensitivity:

IIC(s,n,4')I
/ = max

s [X IC(s01,02 fl(s)]*

We can simplify this quantity to snow the direct dependence on the score func-

tion by using the formula for the influence curve:
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I = max
s EE (s0)* m(s)]i

where 0 is evaluated at 0(q).

Now wl study the various seLsitivitic:s to get a feel for their implications

IRT using the 1PL, 2PL, and 3rL models as examples. Graphs of these quan-

tities are useful but require specific values for item parameters and do not

lead to any more profound conclusions then just analytic circumspection. Graphs

are most useful, however, with actual data, providing diagnostic information on

the fit of the model. We study only the MLE induced by {no} and do not look at

general M-type estimators. We also restrict this study to sensitivities to

departures from the pirametric model, that is we let no =ne for some value of 0.

Huber (1980) remarks that a uetter indication of robustness is to allow n to

roam around a 'e neighborhood of ne while looking at the sensitivities. We do

not have the analytical means to do thiq at this time.

Consider now and for ...he rest of this section the MLE with operational

models 111(0;x):xcX). With Ilene, -m'(eole) V *(s;0) It(s;0) n(s;0) and with

*(s;0) = k(s;0) = g'(Oix)(u-140;x)], we have

IC(s,m,k)
g'(0;x)111-11(0;x)1

= g'(0;x)2 v(0;x) p(x)

Define

M(0;x) = max[7(0;x), 1-140;x)),

the various sensitivies to depar'....res from memo are

max e(0;x) M(0;x)

y g'(0;x)2 v(0;x) .(x)

max g'(0;x)2 M(0;x)
1** x and

y g'(0;x)2 v(0;x) p(x)
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1-
max g'(0;x) M(8;x)
x

23

[1 g'(0;x)2 v(8;x) p(x)]i

Example 1. The 2PL itew response models have g'(0;x) = a(x) where 4.>a(x)>0. if

a(x) = a0, then the models are called the 1PL item response models. /* is

finite provided max a(x) is finite. If the generic item pool X is finite then

Y* is always finite. If the generic item pool is not finite, it is possible

that sup a(x)=. but practical reasons would disallow this from happening because

an "infinitely discriminating item" is rare.

Example 2. The 3PL item response models are defined as 11(0;x) = [1-c(x)] R(8;x)

+ c(x) where 0<c(x)<1 and R(8;x) is a 2PL model. Define v1(0;x)

= R(0;x)[1-R(0;x)]. It can be shown that g'(0;x) = [1-c(x)]a(x) v1(0;x)/v(0;x).

/* is finite provided max a(x) is finite, the discussion in the nrevious example

applies here too.

Example 3. For all the 1PL, 2PL, and 3PL models, because of the behavior of

g'(0;x), /** and I are finite if and only if max a(x) is finite. /** and 1, but

not /*, are invariant for changes of scale in a(x) and b(x). Presumably c(x) is

scale free as it is a probability of the examinee guessing the correct answer to

item x.

The examples lead to the general conclusion that /, 1*, and **
are finite

if and only if maxig'(0;x)1 is finite. For the 1PL, 2PL, and 'PL models this

condition is equivalent to having max a(x) finite.

Because the sensitivities change as 8 changes, their variation over the

entire range of practical 0-values should be studied to properly assess robust-

ness in IRT. This allows for the tact that the MLE procedure must estimate

unique 8 parameters for different subjects. This is in marked contrast with

estimation in logistic regression -- the same estimation procedures as IRT but
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the object is to estimate a single 8 (such as lethal dose 50 or the vector of

parameters in one response function). Because the sensitivities must be viewed

globally, procedures that are robust for logistic regression may not be directly

transferable to IRT.

Consider what happens as 1014*. The denominator of /* and /** is Fisher's

information; for 1, it is just the square root. For extreme O's it is reason-

able to assume that any finite set of generic items X, item responses hold

little information about 0; thus it is probable that the denominators of the

sensitivities approach zero as 1014*. Unless the numerators approach zero at

the same or faster rate as the denominators, the sensitivities will explode.

Applying this idea to each sensitivity, we conclude that /* always explodes and

for models with v(0;x)40, Y* and /** both explode. Of the models considereA

before, the 3PL is the only one having v(8;x)>0 as 84-*; thus /* and /** are

bounded for the negative extremes of ability.

These results imply that the MLE procedures are not robust because the

maximum b. in an e-contaminated neighborhood is approximately el* and /* is

unbounded as Iel'"; thus, the MLE cannot tolerate any contamination at extreme

8. The 'PL fairs a little better than the 1PL or 2PL as 84-* since its gross

error sensitivity grows a little slower. Thus to achieve full protection one

must look outside the class of MLE procedures, which means we have to sacrifice

efficiency. (Contrast this with the location problem qhere the median is the

efficient procedure for logistic errors and it is optimal for minimizing the

oaximum bias; Huber, 1981).

5.2 Breakdown Point

r
The worst possible bias at no is defined as b(1) = sup le(t)-6(n0)1, where

the supremum is over all arbitrary PDFs, t. Let Pe be an e-neighborhood of no.
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The breakdown point, e*, is the largest e for which b0) is less than the worst

value:

e* = suple : b(e) < b(1) }.

The value of e* depends on the kind of Pe chosen; however, it is sometimes

adequate to consider just one kind of neighborhood. In IRT, b(1)=0,.

We use the following kind of e-neighborhood: Let oslisi and define

v = 11(1-11). Denote the interval D(8;x) = [II - evi, II + evi] when II = 11(8,x);

8 is fixed. Denote the subinterval of [0,1] by D*(8;x) = D(8;010,1]. The

collection of intervals {D*(8;x)}, x fixed, is an e-envelope of the item

response function E(8;x). Define Pe,) = : 11(s) = R *(x)u [1-11*(x)]1-u p(x);

P*(x)e D*(8;x)]. It is an e-ileighborhood "centered" at me.

Define b +(e) = stp[8()-8(110)] and b_(e) = itf[8()-800]. Then

b(e) = max[1:4(e), - b_(e) }. We consider b +(e) first.

Let II° = 1100. Define IN80x) = min[1,H+evi] with II=11(80x). It is clear

that IN80;x) e D(80;x) and 40. the corresponding PDF, satisfies m(8;40)>m(8;11)

for all 8 and all q e Pe,80. The maximum "positive" bias satisfies

111.(e) = inf{e : m(8;40) < 0}

We have breakdown if b +(e) = b(1) = To avoid this it is necessary that

e satisfy lim m(8040) < 0. Using the definition of m(801) we have

m(8;1180) = I e(8;x)p(8ox) - 11(8;x)]p(x) + e g'(8;x)v(80x)ip(x).

Letting 8., and denoting g'(*;x) = lim g'(8;x) we have an equation for the

"positive" side breakdown:

e = y g'(..;x) [1-11(80x)] p(x)

g'( ;x) v(80x)i p(x)

Similarly the "negative" side breakdown is:
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E- = g'( ;x) 11(00x) p(x)

g'(-" ;x) v(0(,.x)i p(x)

And the breakdown:

e+ = min(e+, e).

For a fixed 00, all MLE procedures for IRT have a breakdown point that is

not 0 for Pe neighborhoods considered thus far. But as leo14- the picture

changes: e* = 0 if either 11(00x)41 or 0 for all items x. Thus the 1PL and

2PL induced MLEs have zero breakdown, meaning they have no tolerance for depar-

tures from their models. The 3PL induced MLE has zero breakdown, but for 04-,

the "negative" sided breakdown is not zero, so it could tolerate some departure

from its model there.

Example. The following displays the "positive" and "negative" breakdown points

for the 3PL model with a(x) = ao and c(x) = c0.

Co E E

.025 .16 0

.05 .23 0

.10 .33 0

.20 .50 0
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TABLE 1. ITEM RESPONSE PROBABILITIES

MODEL ITEM 1 ITEM 2 ITEM 3 ITEM 4

Subject:1
True .42 .27 .03 .36
1PL .32 .30 .19 .32
2PL .30 .30 .08 .30
3PL .26 .25 .04 .23

Subject:2
True .32 .26 .05 .26

1PL .26 .25 .15 .10
2PL .27 .27 .05 .26
3PL .26 .26 ' .05 .23

Sub ect:3
True .19 .28 .11 .20
1PL .22 .21 .12 .07

2PL .27 .27 .05 .26
2PL .27 .28 .10 .24

Subject:4
True .50 .44 .47 .60
1PL .55 .53 .38 .55

2PL .46 .46 .50 .53

3PL .46 .43 .46 .41

Subject:5

True .89 .77 .88 .95

1PL .88 .88 .79 .88

2PL .72 .72 .98 .84

3PL .91 .73 .85 .96
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TABLE 2. PARAMETERS OF OPERATIONAL MODELS led

1-PL

Item b a

1 .9 .7 0

2 1.0 .7 0

3 1.9 .7 0

4 .9 .7 0

2-PL

1 1.4 .5 0

2 1.4 .5 0

3 1.1 1.7 0

4 .9 .7 0

3-PL

1 1.3 3.2 .26

2 1.6 1.9 .25

3 1.1 2.1 .03

4 1.1 3.5 .23
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TABLE 3. ASYMPTOTIC PARAMETERS OF MLE's

Model

(1)

01

(2)t (3)

00 -le(00,40)

(4)*

ES(40,4e0)

0)

K(110,100)

(6)*

2
-W(00,110)n-100

(7)

2

00

(8)

I(80)-1

Subject:1
1PL
2PL
3PL

-2

-2

-2

-.2(3)
-.3(3)
-1.2(1)

.10

.10

.00k

.07

.04

.03

.04

.02

.03

.03

.02

.00+

9.47
7.61

400.00

10.26
9.76

400.00

Subject:2
1PL
2PL
3PL

-1

-1

-1

-.6(2)

-.6(1.5)
-.8(2)

.10

.09

.01

.07

.03

.04

.04

.00+

.00+

.n3

.03

.04

8.68
11.42

133.33

10.26
11.76
133.33

Subject:3
___ _ _,-, -- AL AO WA 11 qq 1 'AA

2PL
3PL

0

0
-.6(1.5)
-.1(3)

.09

.06

.U6

.04

.UL

.01

.u.s.

.03

Lagil
18.06

1.1.IW

16.67

Subject:4 ------0
1PL
2PL
3PL

1

1

1

1.2(4)
1.1(4)

1.0(4)

.12

.24

.96

.04

.05

.05

.01

.02

.02

.03

.03

.03

8.16
4.12
1.03

8.16
4.12
1.04

Subject:5
.06

.14

.03

.03

.07

.00+

.03

.07

.03

14.08

36.36
1.68

116.00 1

18.18
1.66

1PL
2PL
3PL

2

2

2

3.8(5)
3.3(5)
1.9(5)

.96

.06

.60

* 36n=16

t Rank order appears in parenthesis.



Imo Jest of blew

12 lefeeme Techmical Damming Cater

Cameo Scotia, 1111 5

Alemodria, VA 22314

Alba TC

I Sc. Mita Lancaster

Accession Policy

1111110100VII/V

Pongee. how 21271

Neshiniton, IC 20301

1 M. Jerry Lamas

ma MOD
Nedamiten , K 20301

1 M. Clarion NcIermici

NI, NEPCOR

NEPCT-11

IMO rem by load

firth Chicago, IL 60064

1 Wary Atsistant for Training and

Personal Technology

Office ef the Rhoden Secretary of Pefens

for Oligarch 6 Engineering

bee 31121, TM Pentagon

Nashingtm, IC 20301

1 M. N. Rove Sells..

Office of the Assistant Secretary

of Defense IVA I 11

21761 Tee 1entagte

Nashington, DC 20301

1 M. Robert A. fisher

U.S. frog Instable for the

'steno's! end Social Sciences

5001 bummer Avenue

Alexandria , VA 22333

31

ifeltiSS

I M. Flirted@ 1. Patter

11E-1111 ling, Km 1 7

1210 MO It., MI

neliagtmi, K MIII

I Or. Yrs II. Wry

Parietal MN Center

Office of Pommel Miasmal

1101 Met 111

NoMiegtee, K 21115

1 Pr. Rams A. Wm

V. S. taost hard Institute

P. O. kbetation 11

Maher City, it 73161

1 Sc. Joliet L. hums, Director

Memory 6 Native Processes

Natalia Science Fogodation

Mutation, K 20550

Phan Imtlir

Sc. Erlimi 1. Worsen

Departeent of Statistics

Modieetreen 6

1155 Copeaugle

1011MX

11r. Isom Pejo'

Educational Testis' Service

truants', 1.1 11150

1 M. Niescia "troikas

Otani M notation

Tel Aviv Iniversity

Tel Aviv, Ramat Aviv 41171

Israel

1 M. law "irks

Persmalstemast der Ilundeseehr

11101 hole 10

NEST 0110105

1 M. R. Darrell Pict

Impartial ef Education

University ef Chicago

Dimas, IL 60637

1 M. Arnold IMrr

*ties of Psychological leseirch

Caseree Petits [bateau

CIE

100 Mescals

Jame

1 D. Robert Drennan

Atomics Callege Tasting Progress

P.O. Ion 161

Ilea City, IA 52243

1 M. Siena leyan

6201 Pce Road

Saheb., WI 20117

1 M. Ernest P. Colette

307 Stokely

University ef Tennessee

Danville, TN 37116

1 M. Joh, I. Carroll

401 Elliott Rd.

Cbopel Mill, NC 27514

Private lector

I M. Swim Cliff

Sept. ef hydielegy

Univ. of L. California

Volvorsity Park

Les Angeles, CA 11007

1 M. Sew Creasy

Wales Marl Cater
Miveraty of Lembo

herhaavelam 2

2334 EN Leyden

The NEMBILMIS

1 Lee Gamboa

14 Liberals Road

Athena, CA 11105

1 COrklraolill Library

2500 Diem had

Nentrey, CA 13140

1 M. Timothy lousy

University of Manhole

',partial of Entational Psychology

Urbana, IL 61101

1 Dr. lattrasad Deo

Syracuse University

000artment of Psychology

Inacese, NY 13210

1 M. Pommel 'maim

Department of Psychnrov

University ef lllinoi

Champalin, IL 61120

1 Dr. Nei -Ka long

Ball Foundation

100 Roosevelt Road

Mining C, Suite 206

She Ellyn, IL 60137

1 M. Fritz Memo*

Diwteent ef Psychology

University of Illians

407 E. Daniel St.

Champaign, IL 61120

1 M. Stephen Dunbar

Lindquist Center for Neasurnant

University of lox

Ism City, IA 52242

Private Sector

1 M. Jan N. Eddies

Vnivorsity ef Illinois

252 bonging beard Lavatory

113 Moth "MMus Itreet

Prima, IL 61101

1 M. Susan Embortim

MOW IVARTNENT
UNIVOISITY V VAIIMS

Lowe, 11 66045

OK Facility-Ampliatioas

4133 Nodby Avaeee

1. 20014

1 M. "mow A. Fairbant, Jr.

Perforeance Retries, Inc.

5125 Callaghan

Suite 225

Si. Antonio, TI 71221

1 M. turd Feldt

Lindquist Dater for Neasureent

University if Ian

Iola City, IA 32242

1 Univ. Prof. M. Where Fischer

Wanda's/ 513

A 1010 MARA

AUSTRIA

1 Professor 'meld Fitzgerald

University of Non England

Areadale, Neu South Vales 2351

AUSTAALIA

1 Dr. Deter Fletcher

University of °rigor

Departrent of Computer SLIM!

Salem, OR 17403

1 M. John R. Freemason

Solt berme& 6 Oman

50 Melton Street

emend's, NA 021:1

1 Or Janice lifford

University of Massachusetts

School of Education

Aghast, RP 01002

BEST COPY . 9

AVAILABLE
1't

Private Mir

I Sc. lien per
Londe' lurch I levelopmet Coster

University of PIttsbergh

MN rove 'Viet
P11,111111, PA 15260

1 Sc. Norris I. Ilsci

217 Stine Nell

Weal University

Ithaca, NY 1103

1 Sc. lent Irmo

John Poplins Iniversity

Imerteent ef Psychology

Darin 6 34th Street

tattier., NI 21211

I Or. Jams S. Memo

University ef California, lerkeley

Departmet of Etotatioo

Derkeley , CA

1 lipI. Pad. Niches! N. Nabs

niversitet Iasseldorf

Ernehongsamenshaftliches lost. II

liniversitatistr. 1

0-4000 Dusseldorf 1

NEST 111111111

1 Dr. Pan %ambition

School of Education

University ef lassechimetts

Amherst, NA 01002

I Prof. Litz F, Woks

Universitet lusseldorf

Erzietwassismoschaftliches lost. II

Waversitatsstr. 1

Dusseldorf 1

NEST MANY

M. . Norst

677 6 Strut, 0114

Chula Vista, CA 90010

I Dr. Lloyd lhaphreys

Department of Psychology

University of Illinois

403 East Imin Street

Champaign, 11 61120

38



Navy

I C011 11711

Attn: Arthur S. Pains

Naval Truing tempest Coate.

Orloado, FL 32113

1 M. Nick lad

Office of Neva! Research

Limn Office, Far East

MO Si. Francisco, CA 96503

1 Lt. AlnanIer Rory

4001114 Psycho, dry

Measurement Illusion

Mat
NAS Pensacola. FL 32501

I Dr. Rebut Mean

NAVTRAE1C1PCEN

Code 11-0954

Orlando, FL 3210

1 Ir. Robert Carroll

NOWA 115

nsh.ngton , DC 20370

1 M. Stanley Colin.

Office of Naval Technology

100 N. Dainty Street

Arlington, VA 22'

1 COO Nike Cvrar

Office of Nava feseerch

100 N. Dummy .t.

Code 270

Arlington, VA 2:217

1 Dr. John Ellis

Navy Personae' RID Center

Si. Diego, CA 42:5:

1 DR. PAT TEIERICO

Coil P13

WIC
San line. CA 92152

1 Dr. Paul Foley

Navy Personnel RID Center

Si. Moo, CA 92152

1 Ns. lance' Netter

Navy Personae! RU tooter Mode 621

S11 WSJ, CA 92152

Navy

I W. lick Nuke*

NAVOP-135

erliegen Ann

Ins 2134

Nashintm , DC 20350

1 Sr. Nanum '. Kerr

Chief of Naval Eilmatios and Training

Cede OCA2

Naval Air Station

Pensacola. FL 32501

1 Sr. Leonard 'rooky'

Navy Personnel RID Center

San Diego, CA 9215:

1 M. Daryl' Lana

Navy Personnel RID Center

Sao Dino. CA 4215:

1 Sr. Villim L. !Islay 102)

Die! of Naval Elocatior and Training

Naval Air Station

Pensacola, FL 32500

1 Sr. Jane Nclride

Navy Personnel RID Center

Sao liego, CA 42152

1 Sr Villim Montague

NPRDC Cede 13

Sr Imo, CA 92157

1 M. Kathleen ammo

Navy Personnel AID Center ICede 621

San Diego, CA 12132

1 Library, Cade P2011.

Navy Personnel RID Center

Sao lino, CA 92152

I Tunica! Director

Navy Personnel RAI Center

Si. lino, CA 42152

6 Person,' I Training Renard Propel

Cole 447PT

Office of Naval Nesearch

Arlington, VA 22217

1 Sr. Carl Ices

CNT-PICD

hails' 9C

kelt Lakes ITC, IL 60001

Navy

1 Nr. Irmo loads

NPIIDC Code 62

Sae liege, CA 92152

I Sr. Nary Scare?

Navy Personae! DOD Caner

San lino, CA 92152

1 Dr. Alfred F. Sonde

Seam Scientist

Cede 71

Naval Trainee Eminent Center

Orlando, FL 32111

1 Sr. licharil Sea
Liaison Scientist

Office of Naval Inurch

frisch Office, Loehr

hot 39

FPO Ni. Perk, NY 09510

I Sr. Richard Sorensen

Navy Personal RID Center

Sam lino, CA 92152

Ilk. Ornament

Navy Personnel RID Center

Si. liege, CA 42152

1 Sr. Frank Clone

Navy Personnel RID Center

Sam lino, CA 42152

1 Ir. Eduard Ungar

Office of Naval Research Mode 411114)

100 Korth Owner Street

Arlington, VA 22217

1 Sr. Ronald Ileitzun

Naval Costarinate School

lepartunt 10 Adainistrative

Seances

AntereY, CA CND

1 Dr. Davila' letiel

Code 12

Navy Personae' RID Center

Sam hen, CA 92152

1 M. RAITIN F. NISKOFF

levy

1 IV John N. Nelfe

Navy Personae' RAD Center

Rai liego, CA 92152

1 M. Mime Nulfeck, Ill

Navy Pummel RIO Coster

San lino, CA 92152

Urine Corps

1 Col. lay Leidicb

Neodesarters, Parise Carps

NCI

leshintso, IC 20310

1 Neadmarters, U. I. Win Corps

Code N01-20

Imainten, DC 20380

1 Special Assistant for Ranee

Corps Netters

Cede !On

Office of Neva! Research

IMO N. 'guy It.

Arlington, VA 22217

1 Royer Frank Inalman, UPC

Neadquarters, Wise Corps

'Cade NP1 -201

lakinten, IC 20380

Arey

1 Sr. Coat Eaton

Arils Reeearch Institute

5001 Eisenhower Dial.

Alenedria , VI 32333

1 Sr. elision %Ain

Ann Inearch Institute

5001 Elimenew Blvd.

Alumina, VA 22333

1 M. Karen Mitchel:

Army Research Institute

5001 Eiseman,. Blvd

Alesiodria, VA 22333

1 Sr. Millie E. Nordbrocs

FIC-111C0 Ma 25

APO, NV 09710

1 M. Harold F O'Neil, Jr.

Director, Training Research Lab

Ann Research Institute

5001 Wenner Avenue

Alexandria, VA 27333

1 Canaan*, U.S. Prey Research Institute

for the Mineral I Social Sciences

ATTN: MAI -IR 11r. Judith Orisino

5001 Eisenhower AVIIII,

Alexandria, VA 22333

1 Ir. Robert loss

U.S. Grey Research Institute for the

Social and Behavioral Same/.

5001 Wishner Avenue

Alexandria, kl 22333

1 M. Robert Sailor

U. S. Prey Research Institute for the

Behavioral and Social Science

5001 limner Ave...

Alumina, VA 27333

1 M. Joyce Shields

Arey Research Institute far the

Behavioral and Social Sciences

5001 Wanner Inoue

Alexandria, VA 22333

1 Dr. Nilde Moe

A.im ltmerch lastitete

5001 Einahner Ave.

Alesamdria, VA 22:32

Air Force

1 Ir. Pillion E. Alley

Ma/NOT
Brooks AF1

, T1 71235

1 Dr. Earl A. Alleisi

NO. MIR 1AFSC,

Moses AF1. T1 71235

1 Hr. Raynor E. Christi'

Ant /NOE

Irons AF1, T1 71235

I Dr. Alfred R. FreflY

MOSA/111.

lolling Ail. DC 203::

3 Ir. Sherrie Sett

AFNIUNODI

Irons AF1

, TI 71233

I Sr. Patrick wylloner

AFNUNDE

Irons AF1, II 71235

1 Sr. Amdolph Park

AF1611.711041

brooks AF1, T1 71235

1 O. Rome Pommel'

Air Force Moan Resources Laboratory

Lary ATI, CO 10230

1 D. Nalcols Nee

AFNRIXIC

Irons AF1, II 71235

I Rai. Dill Stricklan

WrIPIOA

eEIN Pentiem

Ilashinton, IC 20330

1 Sr. Jobe Tommy

AFISIRIL

Dolling AFI, DC 20337

1 Now John Isle

11111111./110AN

Drone Ail , 71 72223NAVY PRIONNEL 114 S CENTER

IAN 11E10, CA 92152

39
BEST COPY AVAILABLE 40



'nub lotto 'dote letter Private Sector Private tat, Private lotto Privets Inter

I M. Novo buts 1 M. Charles Leeds I M. Silvio I. Novick 1 Lovell arksw I M. Novice Meeks 1 M. David J. bin

Ispertmest of bodies Facelteit brine letemPtspios 316 Lindielet Coto for Impost Psychological 1 boKitstin 220 Citation SDI Me Elliott Mo11

iverifty M Loots Illykoniversitodt budges biskrelty of lees Foundotions 1310 I. listk It. Unsurelty of Nimweets

Siesta, Alberts One Astensparaat 21 lone City, IA 12242 Collett of Education Nonslip, IL 61120 15 L. Peer bad

CANN 7138 1rologio Adversity of Isis bineeplis, NN 15455

bberlands I Dr. Jaen Ono Ions City, IA 32242 1 Dr. David blow
I Ir. Jack Aster

ECAT, loc. Ispertemet of Psychology 1 Dr. land R. !Haas

2122 Cohen St. 1 Dr. Mort Lien 1175 honk State 'trot I Dr. Ens. bloom blversity of Koos University of kenos California

losing, NI 41101 College of Undies

biorsIty of 11111010

Irmo, IT 14057 7-9-24 :ionise-big.

Nino 251
Laurence, 11 66044 Ispertsimit ef Psychology

Les Angelis, CA 17

I Ir. kph lienh Urbino, IL 61101 1 Nome V. Potion JAPAN I M. Ivy Thomson
College of float's§

Morita' Csocll on Education University of Millis 1 tern. Military Representative

biwersity M kith Caro lioa 1 Ir. let.. Ultulfi ID buttes Service, Suite 20 1 Dr. Villiae Department of Educational Psychology ATTN: Solfgang

Cerais, B 20201 Cater Or Naval Amalysis be knot Cirle, MN Coto it Nava Malysis Chsepaign, IL 60020 lantkranteast

IN North boreord It. lieshiogto, IC NOP 200 herth Dem/regard Street 1-5300 Dena 2

I Ir. Dogleg N. Jon Abeandria, VA 22311 Alesendria, 14 .1111 I Dr. Idiot Tension 4000 Mannino Street, MN

Wood Statistical Technologies
I Ir. Jon Paulsen Apartment of Statistics Umehinto , IC 2001A

Corporative

10 Trani, Court
1 Ir. Fredric N. Lord

Edo/Aisne Innis Service

Sept. 0 Ps,the'iy

Portland State Winkle.

I Dr. V. Sill, -inaiko

Props' 11

burnt! of Ninon
Cabana, AN 6:201 1 Dr. Ince million

Loreneville, NJ NISI Princeton, MJ 01341 P.O. los 731 Nanover P and Advisory Services Department of felcational Psychology

Portland, N 97217 Seiths"., d.ition 1 tr. Ledyard Tucker Alursity of Milieu

I Professor John A. bats 1 Dr. James Undo 101 Noah . ;trot Durrett! ef Minus Urbana, IL 61101

Separtsent of Psychology "potent of Psychology 1 Dr. Jrato A. Paulsen neva:K.0s. W. 227.4 Impotent If Psychology
be Isivirsity of beton' Unorsity of Intern Australia ertlane State Lkiversity 603 E. Daniel Street I Ps. Marilyn Vingersky

N.S.I. 2300 kilned, V.A. 6099 P.O. Dcm 731 I Dr. Paul basso Clumaigo, IL 61120 Educational Tooting Service

ANDALIA NIIIALIA Pollan, CR 07207 University N Assouri-:olinia Princeton, NJ 01541

Department of Statistics Dr. V. R. A. Upuluri

1 Dr. Villias Each 1 Dr. Ivry Marto 1 Dr. Nark I. Recluse Columbia, IM 63201 ION Conde Corporation 16r. Some bey

Uvorsity o4 Texas -Anti. It 31-E ACT Nuclear Pelson bostatistits Laboratory

Neesurement Ind Evaleati Center fivtatioal fistula Service P.O. Do IAS 1 Martha !tonne P.0.1n0 Neural Sloan-Kettering Cuter tooter

Austin, TS 71703 Princito, MJ 0$451 IoM City, IA :2243 Educational Tonne Service

Princeton, MJ 01141

Oak Wee, TN 37530 127 rk tome

do York, NY 10021

1 Ir. Thins Leonard

University of listens

I M. Avert Actioley

Univorsity sf Toledo

1 Dr. Lawrence Rude-,

403 fla bow I Ir. Peter Staloff

1 Dr. David Vale

Ossessont Suttee Corporation 1 Dr. body Yen

100artralt of Statistics Dept of Educational Psychology Tatou Park, MD 20012 Center for Naval Analysis 7333 ilnivirsity Avenel CTI/Ntrirso Mill

1210 Nest byton Street Tsieds, OX 43606 460 ier'h 2nolgare Street ite Del Note Research Park

Madison, VI 33705
1 Dr. J. Ryan Ilona, la, VA 22311 It. Pm £5114 Monterey, CA 4140

1 Dr. Barbara bens Departeent of Education
I Ir. Alan Lipoid Nunn Insures' Anserch Ireolution Suversity of South Carona. 1 Dr. :miss Stout I Ir. ; liner
Learning NI Center 300 North lieshiniten Colvin+, IC 29201 Wivorsity M nous OtvISIOn of Psychological Studies

University of Pittsburgh Alesandria, VA 22314 Department of Nathentits Educational Tootle! brute

3839 O'Hara Street 1 FOOF. POPO InEJINA Urbana, IL 61101 Princeton, NJ 041540

Pittnireh, PA 15240 1 Dr. Robert Wiley IEPT. OF PS0CMOLOP

Educational Toone, Wyk. UNIVERSITY OF TENNESSEE 1 Ir. Nariharan basinathan I Dr. Noe-Nei Vane

1 Dr. Michael LIMN

Apartment ef Educational Psychology

Priscetee, MJ 01:1 NOIVILLE, TN 3791A Laboratory of Psychometric and

Evaluation Angara

....bust Center for basurnert

burnty of Iona
210 Education Sly. I M. V. Alan Pounder 1 Frank L. 'chain School of Education loos City , IA 52:42

&Adversity of Illinois Unvirsity of Onassis Departeent of Psychology University N N /putts
Chapman, IL A1101 Department of Psychology Plea. N beret, NA 0103 1 Dr. Silo Vetere

Oklohns City, OK 73069 Sorge Nashioscon Unvorsity

lkshington, IC 20032 I Dr. Kauai Tetuan

NueINO

300 Month Inhiogton

Cosputer land Education Iteoirch Lab Alumnus, VA 22314

41

252 Informs Rem. en Lotorstery

Urbana, IL 61$01

BEST COPY

42


